High resolution kinetic beam schemes in generalized coordinates for ideal quantum gas dynamics

نویسندگان

  • Yu-Hsin Shi
  • Juan-Chen Huang
  • Jaw-Yen Yang
چکیده

A class of high resolution kinetic beam schemes in multiple space dimensions in general coordinates system for the ideal quantum gas is presented for the computation of quantum gas dynamical flows. The kinetic Boltzmann equation approach is adopted and the local equilibrium quantum statistics distribution is assumed. High-order accurate methods using essentially non-oscillatory interpolation concept are constructed. Computations of shock wave diffraction by a circular cylinder in an ideal quantum gas are conducted to illustrate the present method. The present method provides a viable means to explore various practical ideal quantum gas flows. 2006 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-order kinetic flux vector splitting schemes in general coordinates for ideal quantum gas dynamics

A class of high-order kinetic flux vector splitting schemes are presented for solving ideal quantum gas dynamics based on quantum statistical mechanics. The collisionless quantum Boltzmann equation approach is adopted and both Bose– Einstein and Fermi–Dirac gases are considered. The formulas for the split flux vectors are derived based on the general three-dimensional distribution function in v...

متن کامل

Canonical thermostatics of ideal gas in the frame work of generalized uncertainty principle

The statistical consequences of minimal length supposition are investigated for a canonical ensemble of ideal gas. These effects are encoded in the so-called Generalized Uncertainty Principle (GUP) of the second order. In the frame work of the considered GUP scenario, a unique partition function is obtained by using of two different methods of quantum and classical approaches. It should be noti...

متن کامل

Kinetic Flux Vector Splitting for the Euler Equations with General Pressure Laws

This paper attempts to develop kinetic flux vector splitting (KFVS) for the Euler equations with general pressure laws. It is well known that the gas distribution function for the local equilibrium state plays an important role in the construction of the gas–kinetic schemes. To recover the Euler equations with a general equation of state (EOS), a new local equilibrium distribution is introduced...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation.

Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 222  شماره 

صفحات  -

تاریخ انتشار 2007